
D e p t o f C S E , M B I T S Page 1

BANKER’S ALGORITHM

 The resource-allocation-graph algorithm is not applicable

to a system with multiple instances of each resource type.

 Banker’s algorithm is able to deal with multiple instances

of different resource types.

 The name was chosen because the algorithm could be used

in a banking system to ensure that the bank never allocated

its available cash in such a way that it could no longer

satisfy the needs of all its customers.

 When a new process enters the system, it must declare the

maximum number of instances of each resource type that it

may need.

 This number may not exceed the total number of resources

in the system.

 When a user requests a set of resources, the system must

determine whether the allocation of these resources will

leave the system in a safe state.

 If it will, the resources are allocated; otherwise, the process

must wait until some other process releases enough

resources.

 Several data structures must be maintained to implement

the banker’s algorithm.

 We need the following data structures, where n is the

number of processes in the system and m is the number of

resource types:

D e p t o f C S E , M B I T S Page 2

1. Available. A vector of length m indicates the number of

available resources of each type. If Available[j] equals k,

then k instances of resource type Rj are available.

2. Max. An n × m matrix defines the maximum demand of

each process. If Max[i][j] equals k, then process Pi may

request at most k instances of resource type Rj .

3. Allocation. An n × m matrix defines the number of

resources of each type currently allocated to each process.

If Allocation[i][j] equals k, then process Pi is currently

allocated k instances of resource type Rj .

4. Need. An n × m matrix indicates the remaining resource

need of each process. If Need[i][j] equals k, then process Pi

may need k more instances of resource type Rj to complete

its task.

 Note that Need[i][j] = Max[i][j] − Allocation[i][j].

 Banker’s Algorithm uses 2 sub-algorithms

1. Safety Algorithm

2. Resource-Request Algorithm

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,

respectively. Initialize Work = Available and Finish[i] =

false for i = 0, 1, ..., n − 1.

2. Find an index i such that both

a. Finish[i] == false

b. Needi ≤Work

 If no such i exists, go to step 4.

D e p t o f C S E , M B I T S Page 3

3. Work =Work + Allocationi

Finish[i] = true

Go to step 2.

4. If Finish[i] == true for all i, then the system is in a safe

state.

 This algorithm may require an order of m × n2 operations

to determine whether a state is safe.

 Resource-Request Algorithm

 This algorithm is used for determining whether requests

can be safely granted.

 Let Requesti be the request vector for process Pi.

 When a request for resources is made by process Pi , the

following actions are taken:

1. If Requesti ≤ Needi , go to step 2. Otherwise, raise an

error condition, since the process has exceeded its

maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must

wait, since the resources are not available.

3. Have the system pretend to have allocated the requested

resources to process Pi by modifying the state as follows:

Available = Available – Requesti ;

Allocationi = Allocationi + Requesti ;

Needi = Needi – Requesti ;

D e p t o f C S E , M B I T S Page 4

 If the resulting resource-allocation state is safe, the

transaction is completed, and process Pi is allocated its

resources.

 However, if the new state is unsafe, then Pi must wait for

Requesti , and the old resource-allocation state is restored.

Problem

 Consider a system with five processes P0 through P4 and

three resource types A, B, and C. Resource type A has ten

instances, resource type B has five instances, and resource

type C has seven instances. Suppose that, at time T0, the

following snapshot of the system has been taken:

(a) Find whether the system is safe. If yes, give the safe

sequence

(b) Suppose that process P1 requests one additional instance

of resource type A and two instances of resource type C.

Whether it can be immediately granted?

(c) After granting (b), if P4 request for (3,3,0), whether it

can be granted?

(d) Can a request for (0,2,0) by P0 be granted?

D e p t o f C S E , M B I T S Page 5

Solution

Need = Max – Allocation

Solution (a)

Run Safety Algorithm

Work = Available = (3,3,2)

Consider P0

Need0 = (7,4,3)

Need0 (7,4,3) not less than Work (3,3,2)

Consider P1

Need1 = (1,2,2) is less than Work (3,3,2) //each element is

less. So we can complete P1

Work = Work + Allocation1

ie Work = (3,3,2) + (2,0,0) = (5,3,2)

Set Finish[1] = true //P1 finished

Consider P2

Need2 (6,0,0) not less than Work (5,3,2)

D e p t o f C S E , M B I T S Page 6

Consider P3

Need3 (0,1,1) is less than Work (5,3,2)

So we can complete P3

Work = Work + Allocation3

Work = (5,3,2) + (2,1,1) = (7,4,3)

Set Finish[3] = true //P3 finished

Consider P4

Need4 (4,3,1) is less than Work (7,4,3)

So we can complete P4

Work = Work + Allocation4

Work = (7,4,3) + (0,0,2) = (7,4,5)

Set Finish[4] = true //P4 finished

Consider P0

Need0 (7,4,3) is less than Work (7,4,5)

So we can complete P0

Work = Work + Allocation0

Work = (7,4,5) + (0,1,0) = (7,5,5)

Set Finish[0] = true //P0 finished

Consider P2

Need2 (6,0,0) is less than Work (7,5,5)

So we can complete P2

Work = Work + Allocation2

Work = (7,5,5) + (3,0,2) = (10,5,7)

Set Finish[2] = true //P2 finished

We could successfully complete all the processes.

So the system is safe and the safe sequence is the order of

completion <P1, P3, P4, P0, P2>

D e p t o f C S E , M B I T S Page 7

At last the Work becomes the initial counts of resources A, B

and C as (10,5,7)

Solution (b)

Suppose that process P1 requests one additional instance of

resource type A and two instances of resource type C.

Form Request vector Request1 = (1,0,2) and run Resource –

Request Algorithm

Request1 (1,0,2) is less than Need1 (1,2,2)

Request1 (1,0,2) is less than Available (3,3,2)

Pretend to have allocated

Available = Available – Request1 ;

// Available = (3,3,2) – (1,0,2) = (2,3,0)

Allocation1 = Allocation1 + Request1 ;

// Allocation1 = (2,0,0) + (1,0,2) = (3,0,2)

Need1 = Need1 – Request1 ;

// Need1 = (1,2,2) - (1,0,2) = (0,2,0)

New state is shown below:

D e p t o f C S E , M B I T S Page 8

While running safety algorithm (home work), we get a safe

sequence <P1, P3, P4, P0, P2>.So the system is safe.

Hence the request can be immediately granted

Solution (c)

If P4 request for (3,3,0), whether it can be granted?

Request4 (3,3,0) is less than Need4 (4,3,1)

But Request4 (3,3,0) is not less than Available (2,3,0)

So as per step2 of Request algorithm, the request cannot be

immediately granted. P4 should wait.

Solution (d)

Can a request for (0,2,0) by P0 be granted?

Request0 (0,2,0) is less than Need0 (7,4,3)

Request0 (0,2,0) is less than Available (2,3,0)

Pretend to have allocated

Available = Available – Request0 ;

// Available = (2,3,0) – (0,2,0) = (2,1,0)

Allocation0 = Allocation0 + Request0 ;

// Allocation0 = (0,1,0) + (0,2,0) = (0,3,0)

Need0 = Need0 – Request0 ;

// Need0 = (7,4,3) - (0,2,0) = (7,2,3)

New state is shown below:

D e p t o f C S E , M B I T S Page 9

Run safety algorithm. No process can complete. So no safe

sequences exist. So system is unsafe. Hence request cannot

be granted.

DEADLOCK DETECTION ALGORITHM

 Similar to Bankers algorithm

 In Bankers algorithm (deadlock avoidance), future

information (Max & Need) is considered. But during

deadlock detection, future information is not needed. Only

the present request is considered.

 All data structures in detection algorithms are same as that

of Bankers algorithm except in the case of Max & Need.

 Here we use a matrix Request instead of Need. Max is

avoided

 Deadlock detection Algorithm:

[Write Bankers algorithm by renaming Need as Request]

Problem

Consider a system with five processes P0 through P4 and

three resource types A, B, and C. Resource type A has seven

D e p t o f C S E , M B I T S Page 10

instances, resource type B has two instances, and resource

type C has six instances. Suppose that, at time T0, we have

the following resource-allocation state:

(a) Check whether the system is in deadlock or not

(b) Suppose that process P2 makes one additional request

for an instance of type C. Check whether it leads to

deadlock? If yes, find the processes involved in

deadlock.

Solution

First we have to find out Available

Total allocated number of resource type A is 0+2+3+2+0=7

Total allocated number of resource type B is 1+0+0+1+0=2

Total allocated number of resource type C is 0+0+3+1+2=6

So remaining is (0,0,0) which is our Available

Solution (a)

Run safety algorithm and we can find a safe sequence

<P0, P2, P3, P4, P1> So system is safe, hence not in

deadlock

D e p t o f C S E , M B I T S Page 11

Solution (b)

Additional Request2 = (0,0,1). It may be added with current

request of P2. Request matrix is updated as below

Run safety algorithm. We didn’t get a safe sequence. Only P0

is completed.

Hence the system is in deadlock situation and the

processes involved in deadlock are P1, P2, P3 and P4

